Ôn tập cuối năm phần số học

AH

Cho abc khác 0 ; a+b+c=0 . Hãy rút gọn biểu thức:

\(T=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\dfrac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\dfrac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)

AH
10 tháng 7 2017 lúc 15:53

\(T=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

Do a+b+c =0 nên => a+b = (-c) => \(\left(a+b\right)^2=\left(-c\right)^2=>a^2+2ab+b^2=c^2\)

\(=>a^2+b^2-c^2=-2ab\)

Làm tương tự trên ta có : \(b^2-c^2-a^2=2ac;\)

\(a^2-b^2-c^2=2bc;\)

\(=>T=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}\)

Với a+b+c = 0 thì \(a^3+b^3+c^3=3abc\) (bạn tự chứng minh hằng đẳng thức mở rộng nhé);

\(=>T=\dfrac{3abc}{2abc}=\dfrac{3}{2}=1,5\)

CHÚC BẠN HỌC TỐT.....

Bình luận (0)

Các câu hỏi tương tự
AH
Xem chi tiết
QL
Xem chi tiết
H24
Xem chi tiết
MP
Xem chi tiết
NM
Xem chi tiết
VC
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết