NL

\(D=\frac{2.2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2012}}\)

NL
26 tháng 9 2018 lúc 21:12

Tính biểu thức D

Bình luận (0)
DB
26 tháng 9 2018 lúc 21:25

\(D=\frac{2.2012}{1+\frac{2}{2.\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+\frac{2}{2\left(1+2+3+4\right)}+...+\frac{2}{2\left(1+2+..+2012\right)}}\)

\(=\frac{2.2012}{1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{4050156}}\)

\(=\frac{2.2012}{1+2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{4050156}\right)}\)

\(=\frac{2.2012}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2012.2013}\right)}\)

\(=\frac{2.2012}{1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}\right)}\)

\(=\frac{2.2012}{1+2.\left(\frac{1}{2}-\frac{1}{2013}\right)}\)

\(=\frac{2.2012}{1+\frac{2.2011}{2.2013}}\)

\(=\frac{2.2012}{1+\frac{2011}{2013}}\)

\(=\frac{4024}{\frac{4024}{2013}}\)

\(=2013\)

Vậy D=2013

Bình luận (0)
TA
26 tháng 9 2018 lúc 21:36

\(D=\frac{2\cdot2012}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2012}}\)

\(D=\frac{2.2012}{1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2025078}}\)

\(D=\frac{4024}{1+2\cdot\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{4050156}\right)}\)

\(D=\frac{4024}{2\cdot\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}\right)}\)

\(D=\frac{4024}{1+2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)}\)

\(D=\frac{4024}{1+2\cdot\left(\frac{1}{2}-\frac{1}{2013}\right)}\)

\(D=\frac{4024}{1+2.\left(\frac{2013-2}{4026}\right)}\)

\(D=\frac{4024}{1+2\cdot\frac{2011}{4026}}\)

\(D=\frac{4024}{1+\frac{2011}{2013}}\)

\(D=\frac{4024}{\frac{4024}{2013}}\)

\(D=\frac{1}{2013}\)

Bình luận (0)