ta có : 1/m+n/6=1/2
1/m = 1/2-n/6
1/m = 3/6-n/6
1/m = 3-n/6
=> m.(3-n) = 1.6
=> m.(3-n) = 6
=> 3-n ϵ Ư( 6 )= {-1;1;-2;2;-3;3;-6;6}
Ta có bảng sau :
3-n | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
m | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 1 |
n | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
ta có : 1/m+n/6=1/2
1/m = 1/2-n/6
1/m = 3/6-n/6
1/m = 3-n/6
=> m.(3-n) = 1.6
=> m.(3-n) = 6
=> 3-n ϵ Ư( 6 )= {-1;1;-2;2;-3;3;-6;6}
Ta có bảng sau :
3-n | -1 | 1 | -2 | 2 | -3 | 3 | -6 | 6 |
m | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 1 |
n | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
cho M= \(\dfrac{6}{10.13}+\dfrac{6}{13.16}+\dfrac{6}{16.19}+\dfrac{6}{19.21},\)N = \(\dfrac{1}{20.23}+\dfrac{1}{23.26}+\dfrac{1}{26.29}+\dfrac{1}{29.31}\) tính tỉ số \(\dfrac{M}{N}\)
a, Tính: M = \(1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9603}+\dfrac{3}{9999}\)
b, Chứng tỏ: S = \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)
M=\(\dfrac{1}{1.5}\)+\(\dfrac{2}{5.13}\)+\(\dfrac{3}{12.25}\)+\(\dfrac{4}{25.41}\) và N=\(\dfrac{2}{1.7}\)+ \(\dfrac{3}{7.16}\)+\(\dfrac{4}{16.28}\)+\(\dfrac{5}{28.43}\)+\(\dfrac{6}{43.61}\)
so sánh M và N
\(l,\dfrac{\dfrac{3}{41}-\dfrac{12}{47}+\dfrac{27}{53}}{\dfrac{4}{41}-\dfrac{16}{47}+\dfrac{36}{53}}\)
\(m,\left(3-2\dfrac{1}{3}+\dfrac{1}{4}\right):\left(4-5\dfrac{1}{6}+2\dfrac{1}{4}\right)\)
\(n,F=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2008.2010}\)
\(p,F=\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
tìm m và n và thuộc Z để :
\(\dfrac{1}{m}+\dfrac{n}{6}=\dfrac{1}{2}\)
Mọi người giúp em với ạ em đang cần gấp
1.Tính nhanh
A =( \(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\)) x \(\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
2.Tìm n ∈ Z để \(\dfrac{n+3}{n-2}\)nhận giá trị nguyên
N = \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{380}\)
1. Cho N=\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}\)
CMR \(\dfrac{3}{5}< N< \dfrac{4}{5}\)
2. Cho M=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{29}{3^{29}}-\dfrac{30}{3^{30}}\)
CMR \(M< \dfrac{3}{16}\)
3. Cho Q=\(\dfrac{2}{3}+\dfrac{8}{9}+\dfrac{26}{27}+...+\dfrac{3^{2021}-1}{3^{2021}}\)
CMR \(Q>\dfrac{4041}{2}\)
chứng minh rằng \(S=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)