\(\Delta ABC\) vuông tại \(A\), \(AH\) là đường cao, \(HE\perp AB,HF\perp AC\)
a) Chứng minh \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)
b) Chứng minh \(\frac{AB^3}{AC^3}=\frac{BE}{FC}\)
c) Chứng minh \(AH^3=BC.BE.CF\)
d) Chứng minh \(AH^3=BC.HE.HF\)
Áp dụng theo bài Hệ Thức Lượng Trong Tam Giác Vuông
Help me ><
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\frac{AB^2}{AC^2}=\frac{BH\cdot BC}{CH\cdot BC}=\frac{BH}{CH}\)(đpcm)
b) Ta có: \(\frac{BH}{CH}=\frac{AB^2}{AC^2}\)
\(\Leftrightarrow\left(\frac{BH}{CH}\right)^2=\left(\frac{AB^2}{AC^2}\right)^2\)
\(\Leftrightarrow\frac{BH^2}{CH^2}=\frac{AB^4}{AC^4}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(HB^2=BE\cdot AB\)
\(\Leftrightarrow BE=\frac{HB^2}{AB}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(HC^2=CF\cdot CA\)
\(\Leftrightarrow CF=\frac{HC^2}{CA}\)
Ta có: \(\frac{BE}{CF}=\frac{HB^2}{AB}:\frac{HC^2}{AC}=\frac{HB^2}{AB}\cdot\frac{AC}{HC^2}=\frac{HB^2}{HC^2}\cdot\frac{AC}{AB}=\frac{AB^4}{AC^4}\cdot\frac{AC}{AB}\)
hay \(\frac{BE}{CF}=\frac{AB^3}{AC^3}\)(đpcm)