Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TH

ĐỀ THI GIAO LƯU HSG LỚP 8 CẤP HUYỆN
NĂM HỌC 2014-2015

Cho đa giác đều gồm 1999 cạnh. Người ta sơn các đỉnh của đa giác bằng hai màu xanh
và đỏ. Chứng minh rằng tồn tại ba đỉnh được sơn cùng một màu tạo thành một tam giác cân

TN
17 tháng 2 2022 lúc 20:53

 Ta có đa giác 1999 cạnh nên có 1999 đỉnh. Do đó phải tồn tại 2 đỉnh kề nhau là P và Q đc sơn bởi cùng 1 màu- màu đỏ (Theo nguyên tắc dirichlet) 

Vì đa giác đã cho là đa giác đều có số đỉnh lẻ nên phải tồn tại 1 đỉnh nào đó nằm trên đường trung trực của đoạn thẳng PQ. Giả sử đỉnh đó là A 

-Nếu A tô màu đỏ thì ta có tam giác APQ là tam giác cân có 3 đỉnh A, P, Q đc tô cùng màu đỏ 
-Nếu A tô màu xanh. Lúc đó gọi B và C là các đỉnh khác nhau của đa giác kề vs P và Q 
-Nếu cả 2 đỉnh B và C đc tô màu xanh thì tam giác ABC cân và có 3 đỉnh cùng tô màu xanh 
-Nếu ngược lại, 1 trong 2 đỉnh B và C đc tô màu đỏ thì tam giác BPQ hoặc tam giác CPQ là tam giác cân có 3 đỉnh đc tô màu đỏ

Bình luận (2)

Các câu hỏi tương tự
HT
Xem chi tiết
VH
Xem chi tiết
NA
Xem chi tiết
TP
Xem chi tiết
SM
Xem chi tiết
LH
Xem chi tiết
TT
Xem chi tiết
NP
Xem chi tiết
YD
Xem chi tiết