Cho hai số phức z = 1 + a i ( a ∈ R ) , z ' = 1 + i Tìm điều kiện của a để zz’ là một số thuần ảo
Nếu z=a+bi,a,b thuộc R có số phức nghịch đảo z - 1 = a - b i 4 thì
A. .
B. .
C. .
D. .
Cho số phức z có môđun bằng 2 2 Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức w = ( 1 - i ) ( z + 1 ) - i là đường tròn có tâm I(a;b), bán kính R. Tổng a + b + R bằng
Cho số phức z thỏa mãn ( - 1 + i ) z + 2 1 - 2 i = 2 + 3 i . Số phức liên hợp của z là z ¯ = a + b i với a,b thuộc R. Giá trị của a+b bằng
A.-1
B.-12
C.-6
D.1
Tìm môđun của số phức z=a+bi a , b ∈ R thỏa mãn ( z - 4 ) = ( 1 - i ) z - ( 4 + 3 z ) i
Cho số phức z=a+bi ( a , b ∈ R ) thỏa mãn z + 1 + 2 i - ( 1 + i ) z = 0 ; z > 1 . Tính giá trị của biểu thức P=a+b.
Cho số phức z = a + b i a , b ∈ R thỏa mãn z - 3 = z - 1 và z + 2 z - i là số thực. Tính a +b
A. -2
B. 0
C. 2
D. 4
Cho số phức thỏa mãn: z=a+bi, ( a , b ∈ R ) thỏa mãn: z ( 2 + i ) = z - 1 + i ( 2 z + 3 ) . Tính S = a + b
Cho số phức z = a + ( a 2 + 1 ) i với a ∈ R Khi đó, điểm biểu diễn của số phức liên hợp của z thuộc đường nào sau đây?