Violympic toán 8

HV

Đề ↓ phần bình luận nha.... Giúp mình với ạ

HV
22 tháng 5 2020 lúc 20:22

Violympic toán 8

Bình luận (0)
NL
22 tháng 5 2020 lúc 21:40

1. ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}\frac{x+3}{x-2}=a\\\frac{x-3}{x+2}=b\end{matrix}\right.\) ta được:

\(a^2+6b^2=7ab\Leftrightarrow a^2-7ab+6b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\Rightarrow\left[{}\begin{matrix}a=b\\a=6b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=\frac{6x-18}{x+2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=\left(6x-18\right)\left(x-2\right)\end{matrix}\right.\)

Chắc bạn tự làm đoạn còn lại được

2.

\(x^2+y^2-2xy+5\left(x^2y^2-7xy+12\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+5\left(xy-3\right)\left(xy-4\right)=0\)

Do \(\left(x-y\right)^2\ge0;\forall x;y\Rightarrow5\left(xy-3\right)\left(xy-4\right)\le0\)

\(\Leftrightarrow3\le xy\le4\)

Mà x;y nguyên nên dấu "=" xảy ra khi và chỉ khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\xy=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=y\\xy=4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(2;2\right);\left(-2;-2\right)\)

Bình luận (0)

Các câu hỏi tương tự
HV
Xem chi tiết
HV
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
L2
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
HV
Xem chi tiết