Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(\Delta ABC.M,N,P\in BC,CA,AB.\)CM: AM,BN,CP đồng quy tại tâm tỉ cự của hệ điểm{A;B;C} với hệ số \(\left\{\alpha,\beta,\gamma\right\}\Leftrightarrow\hept{\begin{cases}\alpha+\beta+\gamma\ne0\\\beta\overrightarrow{MB}+\gamma\overrightarrow{MC}=\gamma\overrightarrow{NC}+\alpha\overrightarrow{NA}=\alpha\overrightarrow{PA}+\beta\overrightarrow{PB}=\overrightarrow{0}\end{cases}}\)
Cho 2 điểm P, Q phân biệt trên d cố định. 2 điểm A, B nằm trên cùng 1 phía với d. Xác định trên d hai điểm M, N sao cho \(\left\{{}\begin{matrix}\overrightarrow{MN}=\overrightarrow{PQ}\\\left(AM+BN\right)_{min}\end{matrix}\right.\)
Cho 2 điểm phân biệt A ( xA ; yA ) và ( xB ; yB ). Ta nói điểm M chia đoạn thẳng AB theo tỉ số k nếu \(\overrightarrow{MA}=k\overrightarrow{MB}\left(k\ne1\right)\). Chứng minh rằng:
\(\hept{\begin{cases}x_M=\frac{x_A-kx_B}{1-k}\\y_M=\frac{y_A-ky_B}{1-k}\end{cases}}\)
Cho tam giác ABC
a) Tìm điểm N sao cho \(2\overrightarrow{NA}+\overrightarrow{NB}=3\overrightarrow{BC}\)
b) Tìm tập hợp các điểm M sao cho \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{BA}-\overrightarrow{BC}\right|\)
1,\(\hept{\begin{cases}x^2-2y^2-xy=0\\\sqrt{2x}+\sqrt{y+1}=2\end{cases}}\)
2,\(\hept{\begin{cases}\left(x-y\right)\left(x+y+y^2\right)=x\left(y+1\right)\\\sqrt{x}+\sqrt{y+1}=2\end{cases}}\)
3,\(\hept{\begin{cases}2y^3-\left(x+4\right)y^2+8y+x^2-4x=0\\\sqrt{\frac{1-x}{2}}+\sqrt{x+2y+3}=\sqrt{5}\end{cases}}\)
cho hình vuông ABCD có cạnh a. Gọi d là đường thẳng qua D và song song với AC. M là điểm tùy ý trên d. Giá trị nhỏ nhất của biểu thức\(T=\left|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\right|\)
\(\hept{\begin{cases}\left(x-y\right)^2+4x=4\sqrt{\left(x+1\right)y}-3\\\left(xy-y\right)^2=4\left(y-1\right)\sqrt{2x^2-4}-7\end{cases}}\)
\(\hept{\begin{cases}\left(x-y\right)^2+4x=4\sqrt{\left(x+1\right)y}-3\\\left(xy-y\right)^2=4\left(y-1\right)\sqrt{2x^2-4}-7\end{cases}}\)
\(\hept{\begin{cases}x^3+\left(x-1\right)^3=\left(y+1\right)^3+9\left(1-y\right)\\\left(\sqrt{x}+\sqrt{y}\right)\left(\frac{1}{\sqrt{x+3y}}+\frac{1}{\sqrt{y+3x}}\right)=2\end{cases}}\)