a) ax-bx+x+ay-by+y
= (a-b+1)x+(a-b+1)y
= (a-b+1)(x+y)
b) am+an+ap-bm-bn-bp-m-n-p
= a(m+n+p)-b(m+n+p)-(m+n+p)
= (a-b-1)(m+n+p)
a) ax-bx+x+ay-by+y
= (a-b+1)x+(a-b+1)y
= (a-b+1)(x+y)
b) am+an+ap-bm-bn-bp-m-n-p
= a(m+n+p)-b(m+n+p)-(m+n+p)
= (a-b-1)(m+n+p)
Đặt thừa số chung:
A) ax-bx+x+ay-by+y
B) am+an+ap-bm-bn-bp-m-n-p
bien doi tong thanh tich
a) ax-by+ay-bx
b)am+bn+bm+an-m-n
Đặt thừa số chúng viết tổng thành tích
a) ax - by - ay + bx
b) ax + by - ay - bx
c) a2 - ( b+c) a + bc
d) ( 3a-2)(4a-3) -(2-3a)(3a+1)
e) ax + ay + az - bx - by - bz - x - y - z
Đặt thừa số chung, viết tổng thành tích
a) ab - 2b - 3a + 6
b) ax - by - ay + bx
c) ax + by - ay - bx
d) a^2 - (b + c) a + bc
e) (3a - 2)(4a - 3) -(2 - 3a)(3a + 1)
f) ax + ay + az - bx - by - bz - x -y -z
Các bạn ơi giúp mình với! mÌnh ko hiểu gì lun! Bạn nào giải đc câu nào thì hay câu đó! cảm ơn nhìu ạ!
Cho : bz+ay/x*(-ax+by+cz)=cx+az/y*(ax-by+cz)=ay+bx/z(ax+by-cz)
C/m : ay+bx/c=bz+ay/a=cx+az/b
Đặt thừa số chung (viết tổng thành tích): a) ax - by - ay + bx
b) ax + by - ay - bx
c) (3a - 2)(4a - 3) - (2 - 3a)(3a + 1)
Cho đoạn thẳng AB và điểm C nằm giữa A và B ( C không trùng với trung điểm của AB ) . Trên 2 nửa mặt phẳng đối nhâu bờ AB , kẻ 2 tia Ax và By cùng vuông góc với AB . Trên tia Ax lấy 2 điểm M , M' ; trên tia By lấy 2 điểm N , N' sao cho AM = BC , BN = AC , AM' = AC , BN' = BC . Chứng minh rằng :
a )AN = BM' , AN' = BM ; MC = NC
b)C/M:AN song song với BM',AN' song song với BM
b ) MN' và M'N cắt nhau tại điểm O là trung điểm của AB
Cho đoạn thẳng AB và điểm C nằm giữa A và B ( C không trùng với trung điểm của AB ) . Trên 2 nửa mặt phẳng đối nhâu bờ A , kẻ 2 tia Ax | AB và By |AB . Trên tia Ax lấy 2 điểm M , M' ; trên tia By lấy 2 điểm N , N' sao cho AM = BC , BN = AC , AM' = AC , BN' = BC . Chứng minh rằng :
a )AN = BM' , AN' = BM ; MC = NC
b ) MN' và M'N cắt nhau tại điểm O là trung điểm của AB
Cho đoạn thẳng AB và điểm C nằm giữa hai điểm A và B nhưng không trùng với trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB kẻ 2 tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy 2 điểm M, M'; trên tia By lấy 2 điểm N, N' sao cho AM = BC, BN = AC, AM' = AC, BN' = BC.
a, Chứng minh MC = NC, AN = BM', AN' = BM.
b, Chứng minh AN song song với BM' và AN' song song với BM.
c, Chứng minh rằng MN' và M'N cắt nhau tại trung điểm O của đoạn thẳng AB.