Chứng minh hằng đẳng thức
A = (x – a)(x – b) + (x – b)(x – c) + (x – c)(x – a) = ab + bc + ca – x2
Biết rằng 2x = a + b + c
Câu 1. Phân tích đa thức thành nhân tử
a) x 2 + 4xy + 3y2
b) x 3 – y 3 + z3 + 3xyz
c) x 4 + 2x2 – x + 2
Câu 2. Chứng minh rằng a = b = c nếu có một trong các điều kiện sau:
a) a 2 + b2 + c2 = ab + bc + ca
b) (a + b + c)2 = 3(a2 + b2 + c2 )
c) (a + b + c)2 = 3(ab + bc + ca)
Câu 3. Chứng minh rằng với số tự nhiên n thì A = n(n+1)(n+2)(n+3) + 1 là số chính phương.
Câu 4. Tìm x thỏa mãn a) (x – 1)3 + (x – 3)3 = (2x – 4)3 b) (2x – 1)3 + (x + 3)3 = (3x + 2)3 c) (2x + 1)3 + (3x + 3)3 + (-5x - 4)3 = 0
Bài 2: Tìm x, biết:
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0
b) (x-3)^3-(x+3)(x^2-3x+9)+3(x+2)(x-2)=2
c) (x+1)^3-(x-1)^3-6(x-1)^2=-10
d) (5x-1)^2-(5x-4)(5x+4)=7
e) (4x-1)^2-(2x+3)^2+5(x+2)+3(x-2)(x+2)=500
Bài 3: Chứng minh đẳng thức:
6) Cho (a+b+c)^2=3(ab+bc+ca)
Chứng minh rằng: a=b=c
7) Cho (a+b+c+1)(a-b-c+1)=(a-b+c-1)(a+b-c-1)
Chứng minh rằng: a=bc
Bài 4: Tìm GTLN, GTNN:
1) Tìm GTNN của:
A= x^2-2x+y^2-4y+2017
B= 2x^2+9y^2-6xy-6x-12y+4046
b1. cho a+b+c=0. Chứng minh rằng:
a) (ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2
b) a^4+b^4+c^4=2(ab+bc+ca)^2
b2. Chứng minh các đẳng thức sau:
a) (2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=2^32-1
b)100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2
b3. tìm x biết:
a) (2x-3)^2+(3x-1)^2=13(x-1)(x+3)
b)(3x-5)^2-2(2x+1)^2=(x-1)(x+2)
c)(x+1)(x-1)(x^2+1)-(x+3)(x-3)(x^2+9)=5
chứng minh rằng
\(\left(x+a\right)\left(x+b\right)\left(x+c\right)=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
Chứng minh hằng đẳng thức :
a) (x+a)(x+b)=x2+(a+b)x+ab
b)(x+a)(x+b(x+c)=x3+(a+b+c)x2+(ab+bc+ca)x+abc
chứng minh đẳng thức:
(y-a)(y-b)+(y-b)(y-c)+(y-c)(y-a)=ab+bc+ca
biết rằng a+b+c=1,5y
Với giúp mình bài này với:
(2x-5)(x-3)=2x2+2004
chứng minh đẳng thức:
a)(x+a).(x+b)=x2+(a+b).x+ab
b)(x+a).(x+b).(x+c)=x3+(a+b+c)x2+(ab+bc+ca).x+abc
Chứng minh các hằng đẳng thức:
a) (x+a)(x+b)=x2+(a+b)x+ab
b) (x+a)(x+b)(x+c)=x3+(a+b+c)x2+(ab+bc+ca)x+abc
chứng minh
(x+a)(x+b)(x+c)=x3 + ( a+b+c)x2 + (ab+bc+ca)x +abc