Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho số tự nhiên A= dcba. CTR:
a, Nếu (a+2b) chia hết cho 4 thì A chia hết cho 4 và ngược lại
b, Nếu (a+2b+4c) chia hết cho 8 thì A chia hết cho 8 và ngược lại
biết bc chia hết 4. CTR abc chia hết cho 4
Bài 5: Chứng minh rằng:
a, a thuộc Z thì a( a+1 )( a+2 ) chia 3
b, Nếu ( a-b ) chia hết cho 4 thì ( a - 7b ) chia hết cho 4
c, Nếu a chia hết cho 4; b thuộc Z thì ( -2a - 8b ) chia hết cho 8
d, Nếu a,b thuộc Z; ( a + 2b + 3c ) chia hết cho 5 thì ( a + 3b + 7c ) chia hết cho 5
CTR nếu bcd chia hết 125 thì abc chia hết 125
1.Cho số tự nhiên A=dcba.CMR:
a>Nếu (a+2b) chia hết cho 4 thì A chia hết cho 4,ngược lại.
b>Nếu (a+2b+4c) chia hết cho 8 thì A chia hết cho 8,ngược lại.
Ai giải nhanh nhất mình tick,nhớ giải ra với nhé!
Cho N = dcba chứng tỏ rằng
nếu (a+2b) chia hết cho 4 thì N chia hết cho 4
CTR: Nếu tổng abc + efg chia hết cho 37 thì abcbefg chia hết cho 37
chứng minh rằng
a) nếu 20a + 11b chia hết cho 17 thì 83a + 38b chia hết cho17
b) nếu (2a +3b +4c) chia hết cho 7 thì ( 13a + 2b - 2c ) chia hết cho 7
c) nếu a +4b chia hết cho 13 thì 10a + b chia hết cho 13
d) nếu a + 2b chia hết cho 5 thì 3a - 4b chia hết cho 5
e) nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
Cho A = dcba
Chứng minh rằng nếu (a + 2b) chia hết cho 4 thì A chia hết cho 4.