sinx + sin2x + sin3x = 1 + cosx + cos2x
cos3x + sin3x + cosx - sinx = \(\sqrt{2}\)cos2x
sinx + sin2x + sin3x = cosx + cos2x + cos3x
Câu 1: Giải các phương trình sau:
a, \(\sqrt{2}sinx-cosx=\sqrt{2}\)
b, sin7x+ \(\sqrt{3}\) cos7x =\(\sqrt{2}\)
c, 5cos2x-12sinx=13
d, sinx+cosx=\(\sqrt{2}\)
e, \(\frac{1+\sqrt{3}}{2\sqrt{2}}\)cosx+ \(\frac{1-\sqrt{3}}{2\sqrt{2}}\)sinx= \(\frac{1}{2}\)
Câu 2: giải các phương trình sau:
a, \(\sqrt{3}\)tanx-6cotx+2\(\sqrt{3}\) - 3=0
b, \(\frac{1-sin2x}{2sinx}\)=sinx
c, \(\sqrt{3}sinx-cosx=1\)
d, \(2sin3x+\sqrt{5}cos3x=3\)
e, sinx(cosx+2sinx)+1=cos2x-2
giải các pt
a) \(sinx+\sqrt{3}cosx=2sin\left(x+\frac{\pi}{6}\right)\)
b) \(\sqrt{3}sinx+cosx=2sin\frac{\pi}{12}\)
c) \(cosx-\sqrt{3}sinx=2cos3x\)
d) \(sin3x-\sqrt{3}cos3x=2sin2x\)
Giải phương trình lượng giác bậc nhất đối với sinx và cosx:
\(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)
cosx + cos2x + cos3x + 1 = 0
Câu 1: Giải các phương trình sau:
a, \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2\)+\(\sqrt{3}cosx=2\)
b, \(\frac{\left(1-2sinx\right).cosx}{\left(1+2sinx\right)\left(1-sinx\right)}=\sqrt{3}\)
c, 5sinx-2=3(1-sinx).tan2x
d, \(\frac{2\left(sin^6x+cos^6\right)}{\sqrt{2}-2sinx}=0\)
e, cos23x.cos2x-cos2x=0
Câu 2: giải các phương trình sau:
a, sinx+cosx.sin2x+\(\sqrt{3}cos3x=2\left(cos4x+sin^3x\right)\)
b, \(\frac{\left(2-\sqrt{3}\right).cosx-2sin2\left(\frac{x}{2}-\frac{\pi}{4}\right)}{2cosx-1}\)
c, 8sin22x.cos2x=\(\sqrt{3}sin2x+cos2x\)
d, sin3x- \(\sqrt{3}cos^3x=sinxcos^2x-\sqrt{3}sin^2xcosx\)
\(cosx-2cos3x=1+\sqrt{3}sinx\)
\(sinx+sinx\left(x+\dfrac{\pi}{3}\right)+sin4x=sin\left(2x-\dfrac{\pi}{3}\right)\)
\(\left(1-\dfrac{1}{2sinx}\right)cos^22x=2sinx-3+\dfrac{1}{sinx}\)
( sinx -2cosx)cos2x + sinx = (cos4x - 1)cosx +\(\dfrac{cos2x}{2sinx}\)
\(\left(\dfrac{cos4x+sin2x}{cos3x+sin3x}\right)^2=2\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+3\)
giải các pt sau:
a,\(4sin^23x+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}=4\)
b, \(cos2x+9cosx+5=0\)
c,\(4cos^2\left(2-6x\right)+16cos^2\left(1-3x\right)=13\)
d, \(\frac{1}{cos^2x}-\left(1+\sqrt{3}\right)tanx-1+\sqrt{3}=0\)
e, \(\frac{3}{cosx}+tan^2x=9\)
f, \(\frac{1}{sin^2x}=cotx+3\)
g,\(9-13cosx+\frac{4}{1+tan^2x}=0\)
h,\(\frac{1}{cos^2x}+3cot^2x=5\)
i, \(cos2x-3cosx=4cos^2\frac{x}{2}\)
k, \(2cos2x+tanx=1\)
giải các phương trình sau: ( pt bậc nhất đối với sinx và cosx)
a, \(sinx+cosx=\sqrt{2}sin5x\)
b, \(\sqrt{3}sin2x+sin\left(\frac{\pi}{2}+2x\right)=1\)
c, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx+\sqrt{3}-1=0\)
d, \(3sin^2x+\sqrt{3}sin2x=3\)
e, \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)
f,\(8cos2x=\frac{\sqrt{3}}{sinx}+\frac{1}{cosx}\)
g, \(cosx-\sqrt{3}sinx=2cos\left(\frac{\pi}{3}-x\right)\)
h, \(sin5x-cos5x=\sqrt{2}cos13x\)
i, \(\left(3cosx-4sinx+6\right)^2-9cosx+12sinx-16=0\)