Trường hợp 1 :
Giả sử a > b > 0 \(\Rightarrow\frac{1}{a}<\frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}<0;\frac{1}{a-b}>0\)
\(\Rightarrow\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
Trường hợp 2
Giả sử a < b \(\Rightarrow\frac{1}{a}>\frac{1}{b}\Rightarrow\frac{1}{a}-\frac{1}{b}>0;\frac{1}{a-b}<0\)
\(\Rightarrow\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
Vậy không tồn tại hay không có hai số nguyên dương a , b khác nhau sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
Đúng 0
Bình luận (0)