Ta có đao hàm y’ = 4x3- 8( m-1) x= 4x( x2- 2( m-1) )
nên hàm số có 3 điểm cực trị khi m> 1.
Với điều kiện m > 1 đồ thị hàm số có 3 điểm cực trị là:
A ( 0 ; 2 m - 1 ) , B ( 2 ( m - 1 ) ; - 4 m 2 + 10 m - 5 ) , C ( - 2 ( m - 1 ) ; - 4 m 2 + 10 m - 5 ) .
Ta có: AB2= AC2= 2( m-1) + 16( m-1) 4; BC2= 8( m-1)
Để 3 điểm cực trị của đồ thị hàm số tạo thành tam giác đều thì:
AB= AC= BC tương đương AB2= AC2= BC2
Do đó: 2( m-1) + 16( m-1) 4= 8( m-1)
⇔ 8 ( m - 1 ) 4 - 3 ( m - 1 ) = 0
So sánh với điều kiện ta có: m = 1 + 3 3 2 thỏa mãn.
Chọn A.