Cho phương trình log 2 x − x 2 − 1 . log 5 x − x 2 − 1 = log m x + x 2 − 1 . Có bao nhiêu giá trị nguyên dương khác 1 của m sao cho phương trình đã cho có nghiệm x lớn hơn 2?
A. Vô số
B. 3
C. 2
D. 1
Cho phương trình:
sin 3 x + 2 sin x + 3 = 2 c o s 3 x + m 2 c o s 3 x + m - 2 + 2 c o s 3 x + c o s 2 x + m .
Có bao nhiêu giá trị nguyên của tham số m để phương trình trên có đúng 1 nghiệm x ∈ 0 ; 2 π 3 ?
A. 2
B. 1
C. 3
D. 4
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
A. 4.
B. 3.
C. 1.
D. 2.
Có bao nhiêu giá trị nguyên của tham số m để phương trình 6 + x - 2 - x - 3 + x - 6 - x - 5 - m = 0 có nghiệm thực
A. 0
B. 2
C. 3
D. 1
Gọi S = (a;b) là tập các giá trị thực của m để phương trình 2017 2018 x − 1 x − 2 = m 2 + m + 1 có hai nghiệm phân biệt đều lớn hơn 1 . Tính giá trị của T = a b .
A. T = 1 2018 .
B. T = 2017 2018 .
C. T = 1 5 .
D. T = 1 10 .
Cho hàm số y = f x có đồ thị như hình vẽ . Tìm tất cả các giá trị thực của tham số m để phương trình f x − m = 0 có đúng 2 nghiệm và giá trị tuyệt đối của 2 nghiệm này đều lớn hơn 1
A. m > − 4
B. − 4 < m < − 3
C. m > − 3
D. − 4 < m ≤ − 3
Biết hàm số f x = a x 3 + b x 2 + c x + d đạt cực trị tại hai điểm x = 1 , x = 3 Có bao nhiêu giá trị nguyên của m để phương trình f x = f m có đúng 3 nghiệm thực phân biệt.
A. 5
B. 4
C. 7
D. 1
Có tất cả bao nhiêu số nguyên m để phương trình log ( m - x ) = 3 log ( 4 - 2 x - 3 ) có hai nghiệm thực phân biệt.
A. 6.
B. 2.
C. 3.
D. 5.
Phương trình ( m 4 + m + 1 ) x 2011 + x 5 - 32 = 0
(1) Phương trình trên có ít nhất một nghiệm dương với mọi giá trị của m.
(2) Phương trình trên vô nghiệm
(3) Phương trình trên có nghiệm với mọi m
Chọn đáp án đúng
A. Cả 3 đều sai
B. Cả 3 đều đúng
C. Chỉ có (1) đúng
D. (1),(3) Đúng