PB

Có bao nhiêu giá trị nguyên của m để phương trình: 2 x 2 + 2 x 2 − 4 m − 1 x 2 + 2 x + 2 m − 1 = 0 có đúng 3 nghiệm thuộc − 3 ; 0

A. 1

B. 2

C. 3

D. 0

CT
14 tháng 2 2017 lúc 4:57

Ta có:  Δ = 4 m − 1 2 − 4.2. 2 m − 1 = 4 m − 3 2

2 x 2 + 2 x 2 − 4 m − 1 x 2 + 2 x + 2 m − 1 = 0

⇔ x 2 + 2 x = 1 2    ( 1 ) x 2 + 2 x = 2 m − 1    ( 2 )

( 1 ) ⇔ x 2 + 2 x − 1 2 = 0 ⇔ x = − 2 + 6 2 ∉ − 3 ; 0 x = − 2 − 6 2 ∈ − 3 ; 0

Do đó (1) chỉ có 1 nghiệm thuộc  − 3 ; 0

Để phương trình đã cho có 3 nghiệm thuộc đoạn  − 3 ; 0 thì phương trình (2) phải có hai nghiệm phân biệt thuộc đoạn và hai nghiệm này phải khác  − 2 − 6 2

2 ⇔ x + 1 2 = 2 m

Phương trình (2) có hai nghiệm phân biệt khác − 2 − 6 2 và thuộc đoạn  − 3 ; 0

⇔ 2 m > 0 − 2 − 6 2 + 1 2 ≠ 2 m − 3 ≤ − 1 + 2 m ≤ 0 − 3 ≤ − 1 − 2 m ≤ 0 ⇔ m > 0 m ≠ 3 4 m ≤ 1 2 m ≤ 2

Không có giá trị nào của m thỏa mãn.

Đáp án cần chọn là: D

Bình luận (0)

Các câu hỏi tương tự
QM
Xem chi tiết
LN
Xem chi tiết
BX
Xem chi tiết
PB
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
CV
Xem chi tiết
NN
Xem chi tiết
TL
Xem chi tiết