có 45 cặp số tự nhiên a và b thỏa mãn đề bài,tick nha
tick cko mk đi rùi mk tick lại cko là huề đúng k hihi
Tổng 2015 là một số chia hết cho 5 nên (5xa + 9xb) chia hết cho 5 mà 5xa chia hết cho 5 thì 9xb chia hết cho 5 do đó b nhận các giá trị chia hết cho 5.
Theo bài ra: 9 x b < 2015; mà 2015 : 9 = 223(dư 8) nên b nhận các giá trị chia hết cho 5 nhỏ hơn 224.
Các số chia hết cho 5 nhỏ hơn 224 tạo thành dãy số: 0; 5; 10;…; 215; 220.
Vậy b nhận các giá trị thỏa mãn yêu cầu bài là: (220-0):5+1=45(số)
Với mỗi giá trị của b tương ứng với mỗi giá trị của a nên a cũng nhận 45 giá trị.
Vậy có 45 cặp số tự nhiên a và b thỏa mãn.
Đáp số: 45 cặp số tự nhiên
đây mới là đáp án đúng nè. tick mình nhé
bạn nào trả lời 75 là sai hết. bài này được giáo viên các trường kiểm chứng là 45 rồi.
tick mình nhé
Tổng 2015 là một số chia hết cho 5 nên (5xa + 9xb) chia hết cho 5 mà 5xa chia hết cho 5 thì 9xb chia hết cho 5 do đó b nhận các giá trị chia hết cho 5.
Theo bài ra: 9 x b < 2015; mà 2015 : 9 = 223(dư 8) nên b nhận các giá trị chia hết cho 5 nhỏ hơn 224.
Các số chia hết cho 5 nhỏ hơn 224 tạo thành dãy số: 0; 5; 10;…; 215; 220.
Vậy b nhận các giá trị thỏa mãn yêu cầu bài là: (220-0):5+1=45(số)
Với mỗi giá trị của b tương ứng với mỗi giá trị của a nên a cũng nhận 45 giá trị.
Vậy có 45 cặp số tự nhiên a và b thỏa mãn.
Đáp số: 45 cặp số tự nhiên
tick mình nhé
ổng 2015 là một số chia hết cho 5 nên (5xa + 9xb) chia hết cho 5 mà 5xa chia hết cho 5 thì 9xb chia hết cho 5 do đó b nhận các giá trị chia hết cho 5.
Theo bài ra: 9 x b < 2015; mà 2015 : 9 = 223(dư 8) nên b nhận các giá trị chia hết cho 5 nhỏ hơn 224.
Các số chia hết cho 5 nhỏ hơn 224 tạo thành dãy số: 0; 5; 10;…; 215; 220.
Vậy b nhận các giá trị thỏa mãn yêu cầu bài là: (220-0):5+1=45(số)
Với mỗi giá trị của b tương ứng với mỗi giá trị của a nên a cũng nhận 45 giá trị.
Vậy có 45 cặp số tự nhiên a và b thỏa mãn.
Đáp số: 45 cặp số tự nhiên
ổng 2015 là một số chia hết cho 5 nên (5xa + 9xb) chia hết cho 5 mà 5xa chia hết cho 5 thì 9xb chia hết cho 5 do đó b nhận các giá trị chia hết cho 5.
Theo bài ra: 9 x b < 2015; mà 2015 : 9 = 223(dư 8) nên b nhận các giá trị chia hết cho 5 nhỏ hơn 224.
Các số chia hết cho 5 nhỏ hơn 224 tạo thành dãy số: 0; 5; 10;…; 215; 220.
Vậy b nhận các giá trị thỏa mãn yêu cầu bài là: (220-0):5+1=45(số)
Với mỗi giá trị của b tương ứng với mỗi giá trị của a nên a cũng nhận 45 giá trị.
Vậy có 45 cặp số tự nhiên a và b thỏa mãn.
Đáp số: 45 cặp số tự nhiên
45 nhé tick cho mình với nhé
45 nhé chỉ có kết quả này là đúng thôi!
mẹ mình là giáo viên giạy đại học nên đã chỉ mình đáp án là 45 nhé!
nhớ tick nha!
Ta có:
5 x a + 9x b = 2015
9 x b = 2015 - 5 x a
9 x b = 5 x 403 - 5 x a
9 x b = 5 x ( 403 – a)
TH1: b = 0, a = 403 thỏa mãn
Có 1 cặp số tự nhiên a và b thỏa mãn điều kiện bài toán.
TH2: b khác 0 , a khác 403
(403 – a )/ b = 9/ 5
Điều kiện: 0 < a < = 394; b>= 5
Theo tính chất cơ bản của phân số ta có:
(403 – a )/ b = 9 x 1/ 5 x1
(403 – a )/ b = 9 x 2/ 5 x 2
(403 – a )/ b = 9 x 3/ 5 x 3
....................................
(403 – a )/ b nhận bao nhiêu giá trị thì tương ứng có bấy nhiêu cặp số tự nhiên a và b thỏa mãn điều kiện bài toán.
Vì 403 – a < 403 mà 403 : 9 = 44 (dư 7)
nên 403 – a nhận giá trị lớn nhất là: 9 x 44
Do đó (403 – a )/ b nhận các giá trị là:
(403 – a )/ b = 9 x 1/ 5 x1
(403 – a )/ b = 9 x 2/ 5 x 2
(403 – a )/ b = 9 x 3/ 5 x 3
.....................
(403 – a )/ b = 9 x 44 / 5 x 44
(403 – a )/ b x 44 giá trị nên có 44 cặp số tự nhiên a và b thỏa mãn điều kiện bài toán.
Vậy có tất cả 45 cặp số tự nhiên a và b thỏa mãn điều kiện bài toán.
Chắc chắn không phải là 75. Là 45 mới đúng . Tick cho mình nhé!!
dfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppurudfggsdsdsdgddjkl;jioppuru
Kết quả là 45.Đúng 100% luôn không sai đâu,bài này mình hỏi gia sư dạy thêm rồi!
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
ra 45 cap so tu nhien thoa man
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu?????????????????????????????////////????????????????????////////////?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????minh cung hoi bai nay