NL

Có ai làm giúp bài này vs :

Cho tam giác ABC vuông tại A . Biết AB = 9cm , AC = 12cm . Tia phân giác của BÂC cắt cạnh BC tại điểm D . Từ D kẻ đường thẳng vuông góc với AC , đường thẳng này cắt AC tại E . 

a ) Chứng minh : Tam giác CED đồng dạng với tam giác CAB 

b ) Tính tỉ số \(\frac{CD}{DE}\)?

c ) Tính diện tích tam giác ABD ? 

 

NT
7 tháng 5 2017 lúc 20:10

Bạn tự vẽ hình nka !!!

A) XÉT  \(\Delta CED\) và  \(\Delta CAB\)  có : 

\(\widehat{DEC}=\widehat{BAC}=90\)độ        ;     \(\widehat{BCA}\) chung 

\(\Leftrightarrow\Delta CED\infty\Delta CAB\left(g.g\right)\)

B) Theo định lí Py - ta - go trong tam giác ABC vuông tại A ta có : 

       \(BC^2=AB^2+AC^2=9^2+12^2=225\)\(\Leftrightarrow BC=\sqrt{225}=15\left(cm\right)\)

  TA CÓ :   \(\frac{CD}{DE}=\frac{BC}{AB}=\frac{15}{9}=\frac{5}{3}\)

C)  Vẽ đường cao DH vuông góc với AB ở H

Do AD là phân giác của góc A , ta có tỉ lệ : \(\frac{BD}{CD}=\frac{AB}{AC}\)

Áp dụng tính chất tỉ lệ thức , ta có :   \(\frac{BD}{DC+BD}=\frac{AB}{AC+AB}\)\(\Leftrightarrow\frac{BD}{15}=\frac{9}{21}\)\(\Leftrightarrow BD=\frac{45}{7}\left(cm\right)\)

Xét   \(\Delta BHD\)và   \(\Delta BAC\)có : 

\(\widehat{BHD}=\widehat{BAC}=90\)độ   ;     \(\widehat{B}\)chung

\(\Leftrightarrow\Delta BHD\infty\Delta BAC\left(g.g\right)\)

ta có tỉ lệ : \(\frac{BH}{AB}=\frac{BD}{BC}=\frac{HD}{AC}\)\(\Leftrightarrow HD=\frac{BD\cdot AC}{BC}=\frac{\frac{45}{7}\cdot12}{15}=\frac{36}{7}\left(cm\right)\)

VẬY DIỆN TÍCH TAM GIÁC ABD LÀ : \(S_{ABD}=\frac{1}{2}\cdot DH\cdot AB=\frac{1}{2}\cdot\frac{36}{7}\cdot9=\frac{162}{7}\left(cm^2\right)\)

TK MK NKA !!!

Bình luận (0)
KS
3 tháng 5 2018 lúc 20:36

Em nghĩ là 162/7 cm^2

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
VH
Xem chi tiết
HN
Xem chi tiết
DP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
QV
Xem chi tiết
TT
Xem chi tiết