VT

CM\(S=\left(n^2+n-1\right)^2-1\)

chia hết cho 24 với mọi x thuộc Z

TP
9 tháng 1 2019 lúc 20:57

\(S=\left(n^2+n-1\right)^2-1\)

\(S=\left(n^2+n-1\right)^2-1^2\)

\(S=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)

\(S=\left(n^2+n-2\right)\left(n^2+n\right)\)

\(S=n\left(n+1\right)\left(n^2+2n-n-2\right)\)

\(S=n\left(n+1\right)\left[n\left(n+2\right)-\left(n+2\right)\right]\)

\(S=n\left(n+1\right)\left(n-2\right)\left(n-1\right)\)

Dễ thấy S là tích của 4 số nguyên liên tiếp, do đó S chia hết cho 24 ( đpcm )

Bình luận (0)
DH
9 tháng 1 2019 lúc 20:59

\(S=\left(n^2+n-1\right)^2-1\)

    \(=\left(n^2+n-1\right)^2-1^2\)

    \(=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)

     \(=\left(n^2+n-2\right)\left(n^2+n\right)\)

      \(=\left(n^2-n+2n-2\right)\left(n^2+n\right)\)

        \(=\left[n\left(n-1\right)+2\left(n-1\right)\right]\left(n+1\right).n\)

        \(=\left(n-1\right)\left(n+2\right)\left(n+1\right)n\)

          \(=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)

Tích của 4 số liên tiếp luôn chia hết cho 24

\(\Rightarrow S⋮24\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
VU
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
MH
Xem chi tiết
DK
Xem chi tiết
NP
Xem chi tiết
PP
Xem chi tiết