\(\left(x-y-z\right)^2=\left[\left(x-y\right)-z\right]^2\)
\(=\left(x-y\right)^2-2z\left(x-y\right)+z^2\)
\(=x^2-2xy+y^2-2xz+2yz+z^2\)
\(=x^2+y^2+z^2-2xy+2yz-2xz\)\(\left(đpcm\right)\)
Đúng 0
Bình luận (0)
Áp dụng HĐT (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca đó bạn.
Ta có: (x - y + z)^2 >= 0
<=> x^2 + y^2 + z^2 - 2xy + 2xz - 2yz >= 0
<=> x^2 + y^2 + z^2 >= 2xy - 2xz + 2yz
Đúng 0
Bình luận (0)
\((x+y+z)^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2+2xz+2xy+z^2\)
~ Hok tốt ~
Đúng 0
Bình luận (0)
TL:
Ta có:
\(\left(x-y-z\right)^2=\left[\left(x-y\right)-z\right]^2\)
\(=\left(x-y\right)^2-2z\left(x-y\right)+z^2\)
\(=x^2-2xy+y^2-2zx+2zy+z^2\)
=>đpcm
hc tốt
Đúng 0
Bình luận (0)