Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng \(\sqrt{1903\sqrt{1904}\sqrt{1905}...\sqrt{2501}}< 1904\)
CHung minh: \(\sqrt{1903\sqrt{1904\sqrt{1905\sqrt{...\sqrt{2501}}}}}<1904\)
cmr: \(\sqrt{1993\sqrt{1994\sqrt{1995\sqrt{....\sqrt{2501}}}}}<1994\)
Tìm max hoặc min của biểu thức sau:
\(C=\sqrt{2x^2+y^2-4x+2y+3}+\sqrt{3x^2+y^2-6x-8y+19}\)
\(D=\frac{1}{x}\sqrt{\frac{x-1}{x^2-4x+29}}+\frac{1}{y}\sqrt{\frac{y-25}{y^2-100y+2501}}\)
1) CMR \(\frac{1}{\sqrt{1.1999}}+\frac{1}{\sqrt{2.1998}}+\frac{1}{\sqrt{3.1997}}+...+\frac{1}{\sqrt{1999.1}}\ge1,999\)
2) CMR \(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{95\sqrt{94}+94\sqrt{95}}< 1\)
3) CMR \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
4) CMR \(\sqrt{n}< \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
CMR :\(\sqrt{5\sqrt{5\sqrt{5...\sqrt{5\sqrt{5}}}}}+\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6+\sqrt{6}}}}}< 8\)
CMR:\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)
* Cho:
A= \(\left(\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}-\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right).\left(\dfrac{\sqrt{3}-1}{3\sqrt{2}-\sqrt{6}}\right)\)
CMR: A là số nguyên
CMR:\(\sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{.....\sqrt{2017}}}}}}< 3\)