Vì a+5b chia hết cho 7
=> 10(a+5b) chia hết cho 7
=> 10a+50b chia hết cho 7
Mà 49b chia hết cho 7
=> (10a+50b)-49b chia hết cho 7
=> 10a+b chia hết cho 7
Vì a+5b chia hết cho 7
=> 10(a+5b) chia hết cho 7
=> 10a+50b chia hết cho 7
Mà 49b chia hết cho 7
=> (10a+50b)-49b chia hết cho 7
=> 10a+b chia hết cho 7
Chứng tỏ rằng nếu a + 5b chia hết cho 7 thì 10+b cũng chia hết cho 7, nếu 10a +b chia hết cho 7 thì
a+5b cũng chia hết cho 7
a: Cho 27x+3y chia hết cho 17 chứng minh 6x+8y chia hết cho 17
b: CMR:Nếu 3x+5y chia hết cho 7 thì x+4y chia hết cho 7
c:CMR: Nếu x-5y chia hết cho17 thì 10x+y chia hết cho 17
Chứng minh rằng: Nếu a,b thuộc N và a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Cho a và b là các số tự nhiên.Chứng minh rằng:
a)Nếu a+b chia hết cho 7 thì a+8b cũng chia hết cho 7
b)Nếu a-4b chia hết cho 11 thì 12a+7b cũng chia hết cho 11
a) Chứng tỏ ( 5x+9 ) chia hết cho 7 thì 2x+5 cũng chia hết cho 7
b) Số a+4b xhia hết cho 13 thì 10a+b cũng chia hết cho 13
cmr a :B = 10n+18n -1 chia hết cho 27
b : nếu a +2b chia hết cho 5 khi và chỉ khi 3a - 4b chia hết cho 5
c : nếu 3a - b +1 và 2a +3b - 1 đều chia hết cho 7 thì a,b chia 7 dư 3
CMR :
a) Với mọi m,n thuộc N: B = 10n + 18n-1 chia hết cho 27
b) Nếu a+2b chia hết cho 5 <=>3a-4b chia hết cho 5
c) Nếu 3a-b+1 và 2a + 3b-1 đều chia hết cho 7 thì a,b đều chia cho 7 đều dư 3.
Bài 1 : CHO P gồm 6 chữ số CMR:Nếu hiệu giữa số tạo bởi 3 chữ số đầu và tạo bởi 3 số cuối chia hết cho 7 thì P chia hết cho 7 (CMR: chứng minh rằng)
Bài 2:CMR: S1 = 5+52+53+...+5100 chia hết cho 6
Bài 3:a) Tìm n sao cho n+3 chia hết cho n-1
b) Tìm n sao cho 4n+3 chia hết cho 2n-1
CMR:nếu a chia hết cho b thì b chia hết cho a.