xét 4 trường hợp số dư khi chia cho 5 cua an n
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
xét 4 trường hợp số dư khi chia cho 5 cua an n
Dùng quy nạp nha
1. CMR: ∀n thì
a) \(A=10^n+72-1\)⋮81
b) \(B=2002^n-138n-1\)⋮207
2.CMR: ∀n∈N
a) \(1.2+2.3+3.4+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{8}\)
b) \(1^3+2^3+3^3+...+n^3=\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
CMR \(B=\left[n\left(n^2-2\right)^2\right]⋮10\forall n\in Z\)
1, x,y,z∈N*. CMR x+3z-y là hợp số biết `x^2+y^2=z^2`
2,Tìm n∈N* để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\)
3, CMR:\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
BÀI 1: CMR với mọi số tự nhiên \(n\ge3\)
\(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{n^3}< \frac{1}{12}\)
BÀI 2: CMR với mọi số tự nhiên \(n\ge1\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
BÀI 3: CMR với mọi số tự nhiên \(n\ge2\)
\(B=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{1}{n\left(n+1\right)}\right)>\frac{1}{3}\)
M.N giúp mk với!!!!!
\(CMR\)
a) \(\left(n+2\right)^2-\left(n-2\right)^3⋮8\) \(\forall n\in Z\)
b) \(\left(n+7\right)^2-\left(n-5\right)^2⋮24\)
1,Phân tích đa thức thành nhân tử:
a)\(9\left(x+5\right)^2-\left(x-7\right)^2\)
b)\(25\left(x-y\right)^2-16\left(x+y\right)^2\)
2,CMR
a)\(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24
b)\(n^3+3n^2-n-3\)chi hết cho 48
BÀI 1: CMR với mọi số tự nhiên n \(\ge1\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)....\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
BÀI 2: CMR với mọi số tự nhiên \(n\ge2\)
\(B=\left(1-\frac{2}{6}\right)\left(1-\frac{1}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}\)
M.N giúp mk nha. Ai đúng và nhanh nhất mk hứa sẽ giúp bn tăng 3 điểm hỏi đáp
Liên hệ: https://olm.vn/thanhvien/quynhgiang2k4
CMR:
\(\frac{n\left(n+1\right)}{2}\)+\(\frac{\left(n+1\right)\left(n+2\right)}{2}\),n thuộc Z là số chính phương
CMR: n\(\in\)Z
a)\(\left(n+3\right)^2-\left(n-1\right)^2\)chia hết cho 8
b)\(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24
c)\(\left(n^2+3n+1\right)^2-1\)chia hết cho 24 \(\forall\)n\(\in\)Z