NU

CMR:\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+....+\frac{1}{100^2}\)<\(\frac{1}{4}\)

Ta có:\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(1\right)\)

    \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\left(2\right)\)

Từ (1) và (2) ta được \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
TP
Xem chi tiết
TM
Xem chi tiết
TP
Xem chi tiết
NT
Xem chi tiết
BT
Xem chi tiết
GM
Xem chi tiết
DN
Xem chi tiết