Check lại đề đi bạn ơi! Chứng minh \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) thì được
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Check lại đề đi bạn ơi! Chứng minh \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) thì được
a,Cho a>c, b>c ,c>0 .CMR
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
b, Cho x\(\ge\)1, y\(\ge\)1
CMR; \(\frac{1}{x^2+1}-\frac{1}{y^2-1}\ge\frac{2}{1+xy}\)
b1 sử dụng HDT hoặc co-si
a)cho x\(\ge\)0,y\(\ge\)1,z\(\ge\)2cmr \(x\sqrt{y-1}+y\sqrt{x-1}\le xy\)
b)cho \(x\ge0,y\ge1,z\ge2cmr\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{1}{2}\left(x+y+z\right)\)
c)cho a,b,c\(\ge0\)cmr \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
Cho x, y, z là các số thực dương thoả mãn xy + yz + xz = 1. Chứng minh
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
cho x+y+z=4
cmr \(\frac{1}{xy}+\frac{1}{yz}\ge1\)
BL
TA CẦN CM \(\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge1\Leftrightarrow\frac{1}{y}+\frac{1}{z}\ge x\)
mà x=\(4-\left(y+z\right)\)
\(\Rightarrow\frac{1}{y}+\frac{1}{z}\ge4-\left(y+z\right)\Leftrightarrow\frac{1}{y}-2+y+\frac{1}{z}-2+z\ge0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{y}}-\sqrt{y}\right)^2+\left(\frac{1}{\sqrt{z}}-\sqrt{z}\right)^2\ge0\)(luôn đúng)
Cho x,y,z>0,x+y+z=1.CMR
\(\frac{\sqrt{x}}{1-x}+\frac{\sqrt{y}}{1-y}+\frac{\sqrt{z}}{1-z}\ge\frac{3\sqrt{3}}{2}\)
Cho x, y, z là 3 số thực dương và x + y + z ≤ 1. CMR:
\(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\ge\sqrt{82}\)
Tính giá trị biểu thức A= \(\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}\left(a+\frac{1}{a}\right)\) và \(y=\frac{1}{2}\left(b+\frac{1}{b}\right)\)với a, b \(\ge\)1