Cho dãy \(\left(u_n\right)\)xác định: \(\hept{\begin{cases}u_1=3\\u_{n+1}=\frac{1}{2}u_n+\frac{n^2}{4n^2+a}\sqrt{u_n^2+3}\forall n\ge1\end{cases}}\)
a) Với a=0, bằng quy nạp hãy chứng minh \(0< u_{n+1}< u_n,\forall n\ge1\)
b) Với a=1, bằng quy nạp hãy chứng minh \(1-\frac{2}{n}< u_n,\forall n\ge2\)
Chứng minh rằng với mọi số nguyên dương n:
a) \(2^{2^{6n+2}}+3⋮19\)
b) \(2^{2^{2n+1}}+3⋮7\)
N là số dương
N^2+n+3
a) cmr n : 3 dư 1
b) cmr 7n^2+6n+2017
Cmr (2^3^4n+1) + 3 chia hết cho 11 với n thuộc N.
1) Chứng minh rằng
a) n4 + 6n3 +11n + 6n ⋮ 24 (n thuộc Z)
b) n4 - 4n3 - 4n2 + 16n ⋮ 384 (với n chẵn và lớn hơn 4)
c) 3n4 - 4n3 + 21n2 - 10n ⋮ 24 (với mọi n thuộc Z)
d) n5 - 5n3 + 4n ⋮ 120
2) Với mọi số tự nhiên n lẻ
a) n2 + 4n + 3 ⋮ 8
b) n3 + 3n2 - n - 3 ⋮ 48
c) n12 - n8 - n4 + 1 ⋮ 512
d) n8 - n6 - n4 + n2 ⋮ 1152
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
cmr: nếu \(a^2+b^2⋮21\) thì \(a^2+b^2⋮441\)
( dùng đl FERMAT)
CMR : P = \(4n^3+6n^2+3n-17\) không chia hết cho 125 với mọi n thuộc N
Bài 1: Tìm các số thực x để biểu thức \(\sqrt[3]{3+\sqrt{x}}+\sqrt[3]{3-\sqrt{x}}\) là số nguyên.
Bài 2: Chứng minh rằng với mọi số tự nhiên n dương, phương trình sau không có nghiệm hữu tỷ:
\(x^2+2\left(n-1\right)\left(n+1\right)x+1-6n^3-13n^2-6n=0\)
Bài 3: Tìm các số hữu tỷ a và b thỏa mãn \(\sqrt{a\sqrt{7}}-\sqrt{b\sqrt{7}}=\sqrt{11\sqrt{7}-28}\)