\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2-2=\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=\left(a+b-\frac{ab+1}{a+b}\right)^2\ge0\)
\(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2-2=\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=\left(a+b-\frac{ab+1}{a+b}\right)^2\ge0\)
Cho a+b khác 0 Chứng minh \(a^2+b^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\)
Với a,b,c là các số thực dương thỏa mãn ab+bc+ca=1. CMR
\(P=a^2+b^2+c^2+\frac{8abc}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\ge2\)
Phá ngoặc được \(T=2+\frac{1}{a}+\frac{1}{b}+a+b+\frac{a}{b}+\frac{b}{a}=2+\frac{a+b}{ab}+a+b+\frac{a}{b}+\frac{b}{a}\)
Theo bdt cosi ta có \(\frac{a}{b}+\frac{b}{a}\ge2\Rightarrow T\ge4+\frac{a+b}{ab}+a+b\)
Ta có \(\frac{a+b}{ab}+a+b=\frac{a+b}{2ab}+\left(a+b\right)+\frac{a+b}{2ab}\) Theo bdt cosi
\(\frac{a+b}{2ab}+\left(a+b\right)\ge2\sqrt{\frac{\left(a+b\right)^2}{2ab}}\ge2\sqrt{\frac{4ab}{2ab}}=2\sqrt{2}\)
Lại có \(1=a^2+b^2\ge2ab\Rightarrow\frac{1}{ab}\ge2\Rightarrow\frac{1}{\sqrt{ab}}\ge\sqrt{2}\)
\(\frac{a+b}{2ab}\ge\frac{2\sqrt{ab}}{2ab}=\frac{1}{\sqrt{ab}}\ge\sqrt{2}\) \(\Rightarrow T\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
Cho a,b,c là các số thực không âm thỏa mãn, \(\left(a+b\right)\left(b+c\right)\left(c+a\right)>0\)chứng minh rằng:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\ge2\)
Anh em cùng cha khác ông nội với Iran 96
Cho các số thực không âm thỏa mãn \(\frac{a}{b+c}\ge2\) Chứng minh rằng:
\(\left(ab+bc+ca\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{49}{18}\)
Mời mọi người :D
Chứng minh: \(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\) với a, b, c > 0
Cách chứng minh ngắn nhất? Trong 1 - 3 dòng?
dễ cm \(\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{4\left(ab+bc+ca\right)}\ge2\left(a+b+c\right)\)
\(2\sqrt{a^2-ab+b^2}=2\sqrt{\left(\frac{a^2}{b}-a+b\right)b}\le a^2-a+2b\)
từ đó bđt cần cm <=> \(a+b+c\ge ab+bc+ca\)
lại có \(ab+bc+ca+abc\le4\)
\(\Leftrightarrow\left(a+2\right)\left(b+2\right)\left(c+2\right)\le\left(a+2\right)\left(b+2\right)+...\)
\(\Leftrightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\ge1\)
\(\Leftrightarrow\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\le1\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\le\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\le1\)
\(\Rightarrow a+b+c\ge ab+bc+ca\)
=>Q.E.D
Cho tam giác có AB=c, BC = a , CA=b ; ma , mb , mc là độ dài trung tuyến vẽ từ A, B, C . Cmr : \(\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{3}\left(m_a+m_b+m_c\right)\)
\(cho\left|a\right|;\left|b\right|\ge2.cmr:\left(a^2+1\right)\left(b^2+1\right)\ge\left(a+b\right)\left(ab+1\right)+5\)