HM

cmr: (x+y+z)(1/x + 1/y + 1/z) >=9 (voi x,y,z>0)

sau đo tìm GTNN của  M= a/(b+c) + b/(c+a) + c/(a+b)

TL
31 tháng 3 2015 lúc 22:35

1) \(VT=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{x}{x}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{y}+\frac{y}{z}+\frac{x}{z}+\frac{y}{z}+\frac{z}{z}\)

\(=3+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{x}\right)\)

Với 2 số a; b dương dễ dàng chứng minh đc: \(\frac{a}{b}+\frac{b}{a}\ge2\) (có thể chứng minh tương đương)

=>  VT \(\ge3+2+2+2=9=VP\)=> ĐPCM

dâu = xảy ra khi x = y = z

2) Xét \(M+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)

\(M+3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(M+3=\frac{1}{2}.\left(2a+2b+2c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(M+3=\frac{1}{2}.\left(\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{1}{2}.9=\frac{9}{2}\)(Áp dụng câu 1)

=> M \(\ge\frac{9}{2}-3=\frac{3}{2}\)

min M = 3/2 khi a= b = c

Bình luận (0)

Các câu hỏi tương tự
Xem chi tiết
LP
Xem chi tiết
Xem chi tiết
DB
Xem chi tiết
OT
Xem chi tiết
VH
Xem chi tiết
VL
Xem chi tiết
VU
Xem chi tiết
HP
Xem chi tiết