CMR: Nếu (x-y)^2+(y-z)^2+(z-x)^2=(y+z-2x)^2 + (z+x-2y)^2 + (x+y -2z)^2 thì x=y=z
cho P=(x+y)^2 +(x+z)^2 +(y+z)^2
Q=(x+y)(x+z)+(x+z)(y+z) +(y+z)(x+y)
CMR neu p=Q thì x=y=z
CMR: Nếu \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)=1 và\(\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{x}{z}\)=0 thì\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\)=1
CMR (x-y)^2+(y-z)^2+(z-x)^2=(x-z-2x)^2+(z+x-2y)^2+(x+y-2z)^2 thì x=y=z
Bài1: Cho x+y+z=0; xyz(x-y)(y-z)(z-x)#0. CMR: A=(x-y/z + y-z/x + z-x/y)(z/x-y + x/y-z + y/z-x) có giá trị ko đổi
Bài 2: CMR nếu x+y+z=m; 1/x +1/y +1/z=m thì (x-m)(y-m)(z-m)=0
CMR: với mọi x,y,z thì \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
cmr nếu x,y,z khác 0 và x+y+z=0 thì x^4/yz + y^4/xz + z^4/xy = (5/2)(x^2+y^2+z^2)
Cho : (x+y) (x+z) (y+z) (y+x) = 2 (z+x) (z+y) CMR z^2 = (x^2+y^2)/2
Cho : (x+y) (x+z) (y+z) (y+x) = 2 (z+x) (z+y) CMR z^2 = (x^2+y^2)/2