CMR: Nếu với mọi số hữu tỉ x, y, z thỏa mãn hệ thức\(\left(x-y+z\right)^2=x^2-y^2+z^2\)thì \(\left(x-y+z\right)^n=x^n-y^n+z^n\)
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
Cho x,y,z thỏa mãn : x2+y2=(x+y-z)2
CMR: x2+(x-z)2 /y2+(y-z)2 = (x-z)/(y-z)
Các bn giúp mk với mk k cho nhé !
Cho x/(y+z)+y/(z+x)+z/(x+y)=1. Tính giá trị bt N=x^2/(y+z)+y^2/(z+x)+z^2/(x+y)
với x,y,z>0 cmr với x,y,z>0 cmr ( x^2 + 5 )( y^2 + 5 )( z^2 + 5 ) >= 6( x + y + z + 3)^2
1)cho x,y,z la 3 so thực thõa mãn x+y+z=6 va x2 + y2+ z2=12. Tính giá trị của biểu thức Q=(x-3)2016 +(y-3)2016 +(z-3)2016
2) Chứng minh rằng 22n(22n+1 -1) -1 chia hết cho 9 ( n là số nguyên, n >=1)
với x,y,z>0 CMR
(x^2+y^2+z^2)(1/x^2+1/y^2+1/z^2) >= (x+y+z)(1/x+1/y+1/z)
tìm giá trị của x,y,z thõa mãn các điều kiện:x+y+z=6 và x^2+y^2+z^2=12
CMR neu x,y,z la 3 so phan biet thi M co gia tri la so ngyen M=x^2/(x-y)(x-z) + y^2/(y-z)(y-x) + z^2/(z-x)(z-y)