NM

CMR Với mọi số tự nhiên n , ta có : n(n+2)(n+13)chia hết 3

NT
23 tháng 10 2016 lúc 13:07

Mỗi số khi chia cho 3 thì xảy ra 1 trong 3 trường hợp sau:

             n=3k;n=3k+1;n=3k+2 (k là số tự nhiên)

+ Nếu n= 3k thì=> n(n+2)(n+13) chia hết cho 3.        (1)

+Nếu n=3k+1 => :n(n+2)(n+13)=(3k+1)(3k+1+2)(3k+1+13)

                                             =(3k+1)(3k+3)(3k+14)

                                             =(3k+1)(k+1)3(3k+14)

Vì 3 chia hết cho 3=>(3k+1)(k+1)3(3k+14) chia hết cho 3.

Hay n(n+2)(n+13) chia hết cho 3.                    (2)

+Nếu n=3k+2 =>n(n+2)(n+13)=(3k+2)(3k+2+2)(3k+2+13)

                                           =(3k+2)(3k+4)(3k+15)

                                           =(3k+2)(3k+4)(k+5)3

Vì 3 chia hết cho 3=>(3k+2)(3k+4)(k+5)3 chia hết cho 3.

Hay n(n+2)(n+13) chia hết cho 3.              (3)

Từ (1),(2) và (3) => với mọi số tự nhiên n thì n(n+2)(n+13) chia hết cho 3.

Vậy với mọi số tự nhiên n thì n(n+2)(n+13) chia hết cho 3.

Bình luận (0)
NM
23 tháng 10 2016 lúc 13:13

cảm ơn cậu

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
NA
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
PA
Xem chi tiết
NT
Xem chi tiết
TG
Xem chi tiết