CMR: với mọi số nguyên a không chia hết cho 3, đa thức M = x3-x+a không có ghiệm nguyên
cho đa thức : f(x)= ax^2+bx+c trong đó a;b;c là các số nguyên . Biết rằng giá trị của đa thức chia hết cho 3 với mọi số nguyên của x . CMR : a,b,c chia hết cho 3
Cho đa thức P(x)=x^3-a^2x+2016b với a,b là số nguyên và a ko chia hết cho 3 CMR P(x) chia hết cho 3 với mọi x nguyên
a) Cho đa thức f(x) thỏa mã đkiện
x.f.(x+1)=(x+2).f(x)
CMR : Đa thức f(x) có ít nhất 2 nghiệm
b) CMR : Nếu gtrị của bthức f(x)=ax^2+ bx +c chia hết cho 2007 với mọi x nguyên ( a,b là các số nguyên ) thì các hệ số a,b,c đều chia hết cho 2007
Cho đa thức P(x)=x3-a2x+2016b với a, b là số nguyên và a không chia hết cho 3. Chứng minh rằng P(x) chia hết cho 3 với mọi x nguyên
Cho a,b là các số nguyên và đa thức P(x)=x3-a2x+2013b.CMR:Nếu P(x) chia hết cho 3 với mọi x thuộc Z thì a không chia hết cho 3
Cho đa thức f(x)=ax^2+bx+c là một đa thức nguyên ( đa thức có các hệ số là các số nguyên) . Cmr nếu f(1) , f(2) , f(3) đều chia hết cho 7 thì f(m) chia hết cho 7 với mọi m nguyên
Cho đa thức P(x)=\(x^3-a^2x+2016b\)với a,b,c là số nguyên và a không chia hết cho 3 .Chứng minh P(x) chia hết cho 3 với mọi x nguyên
cho đa thức P(x) =ax2 + bx + c với a,b,c là các số nguyên
CMR nếu P(x) chia hết cho 7 vơi mọi x thì a,b,c cũng chia hết cho 7