\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n^{+2}+3^n-2^{n+1}-2^n\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)=3^n.10-2^n.5=3^n.10-2^{n-1}.10\)
vì 3n.10 chia hết cho 10
2n-1 .10 chia hết cho 10
=> \(3^{n+2}-2^{n+2}+3^n-2^n\)chia hết cho 10(đpcm)
3n+2-2n+2+3n-2n=3n.(9+1)-2n.(4+1)=3n.10-2n.5
=3n.10-2n-1.10
=(3n-2n-1).10 chia hết cho 10 với mọi n nguyên dương
Ta có : \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^n\right)\)
\(\Rightarrow10\left(3^n-2^n\right)⋮10\) ( vì \(10⋮10\) )
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\) vs mọi n nguyên dương.
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=\left(3^n.9+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=5\left(3^n.2-2^n\right)\)
Vì \(\hept{\begin{cases}3^n.2⋮2\\2^n⋮2\end{cases}}\Rightarrow3^n.2-2^n⋮2\)
mà \(5.\left(3^n.2-2^n\right)⋮5\)
\(\Rightarrow5\left(3^n.2-2^n\right)⋮2\)và \(5\)
hay \(5\left(3^n.2-2^n\right)⋮10\)
hay \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\)