CMR với mọi n lẻ thì
a. n^2 +4n +3 Chia hết cho 8
b. n^3+3n^2 - n-3chia hết cho 48
c. n^12 -n^8 -n^4 +1 chia hết cho 512
Cho A = n3+3n2+2n. Chứng minh rằng A chia hết cho 3 với mọi số nguyên n
Chứng minh rằng : Với mọi n lẻ thì :
a, n^2 +4n+3 vhia hết cho 8
b, n^3 +3n^2-n-3 chia hết cho 48
giai ho minh nha
cmr với mọi số tự nhiên lẻ n có:
a, n2 +4n +3 chia hết cho 8
b, n3 +3n2 - n -3 chia hết cho 48
c, n12 - n8 - n4 +1 chia hết cho 512
d, n8 - n6 - n4 +n2chia hết cho 1152
CMR: với n lẻ thì a,n2 +4n+3 chia hết cho 8
b.n3+3n2-n-3 chia hết cho 48
c,n12-n8-n4+1 chia hết cho 512
cmr với mọi n thuộc N thì:
a) 2^(4n+1) + 3 chia hết cho 5
b) 2^(4n+2) + 1 chia hết cho 5
c) 9^(2n+1) + 1 chia hết cho 10
d) 7^(4n) - 1 chia hết cho 5
e) 3^(4n+1) + 2 chia hết cho 5
CMR với mọi n thì
a. n^2.(n^2-1) chia hết cho 12
b. n^5 - n chia hết cho 30
c.n^2 + 4n + 3 chia hết cho 8
CMR mọi n thuộc N thì
a, 74n-1 chia hết cho 5
b, 34n+1+2 chia hết cho 5
CMR với mọi số tự nhiên n thì ta luôn có:
a) 714n - 1 chia hết cho 5
b) 124n+1 + 34n+1 chia hết cho 5
c) 92001n + 1 chia hết cho 10
d) n2 + n + 12 không chia hết cho 5