a] CMR với x>1,ta có x/căn bậc hai của x-1>/2
b Cho a>1,b>1.Tìm GTNN của biểu thức a2/b-1 cộng b2/a-1
Cho biểu thức A= x-1 căn bậc hai x-1 + x+2 căn bậc hai x +1 phần căn bậc hai x+1 với a>0,x khác 1
a) rút gọn biểu thức A
B) tìm x để có giá trị bằng 6
Tìm GTNN của:
1) A= căn bậc hai của(x+1) + căn bậc hai của(y-2) biết x+y=4
2) B= (căn bậc hai của(x-1)/x) + (căn bậc hai của(y-2)/y)
3) x + căn bậc hai của(2-x)
Cho a,b > 0 và a2+b2=1. Tìm GTNN của biểu thức sau :
P = \(\left(2+a\right)\left(1+\dfrac{1}{b}\right)+\left(2+b\right)\left(1+\dfrac{1}{a}\right)\)
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
tìm GTNN của biểu thức A=3/(2+căn bậc hai của -x^2-2x+1)
giúp mình với
tìm giá trị nhỏ nhất của biểu thức sau:
a, y=2+ căn bậc hai của x^2-4x+5
b, căn bậc hai của (x^2/4) - (x/6) + 1
Biểu thức sau tính giá tri nào của x
A) Căn bậc x trừ 1
B) căn bậc âm 3x trừ 2
C) căn bậc 3 trên x cộng 5
D) căn bậc 2 trên x mũ 2
E) căn bậc x nhân x cộng 2
Cho a > 0, b > 0 thỏa mãn a + b = 1
Tìm giá trị nhỏ nhất của biểu thức P = (a2 + 1/b2) (b2 + 1/a2)