cau 2
a^2 +b^2+c^2 +3>=2(a+b+c)
<=> a^2+b^2 +c^2 +3 -2a -2b -2c >=0
<=>(a-1)^2+(b-1)^2+(c-1)^2>=0 (luon đúng)
vậy a^2 +b^2 +c^2 +3 >=2(a+b+c)
cau 1
a^2 +b^2 +1>= ab +a +b (H)
<=> 2a^2 +2b^2 -2a -2b -2ab +2>=0 (nhân cả 2 vế với 2 đồng thời chuyển vế)
<=> (a^2 -2a +1) +(b^2-2b+1 )+(a^2 -2ab+b^2)>=0
<=> (a-1)^2+(b-1)^2 +(a-b)^2>=0 (luon dung)
=>H luôn đung