Cho 10 số tự nhiên bất kỳ : a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
****Khó quá giúp mình với!@#***
Cho n và k là các số tự nhiên: \(A=n^4+4^{2k+1}\)
a) Tìm k, n để A là số nguyên tố.
b) CMR: Nếu n không chia hết cho 5 thì A chia hết cho 5.Với p là ước nguyên tố lể của A ta luôn có p-1 chia hết cho 4Cho 10 số tự nhiên bất kì:a1,a2,......a10.chứng minh rằng thế nào cx có 1 số hoặc 1 tổng 1 số các số liên tiếp nhau trong dãy số chia hết cho 10
CMR: có 1 số gồm toàn CS 1 chia hết cho 19
CMR tồn tại 1 số gồm CS 0 và 1 chia hết cho 2015
CMR: có thể tìm đc 1 STN K sao cho 19K - 1 chi hết cho 10
Bài 1:CMR:
a)Tích của 4 số tự nhiên liên tiếp bao giờ cũng chia hết cho 24
b)tích của 5 số tự nhiên liên tiếp bao giờ cũng chia hết cho 120