Ta gọi 3 số tự nhiên liên tiếp lak: a, a+1, a+2.
+ Nếu a chia hết cho 3=> btđcm
+ Nếu a ko chia hết cho 3:
-a:3 dư 1 thì a+2 chia hết cho 3=> btđcm
-a:3 dư 2 thì a+1 chia hết cho 3=> btđcm
(btđcm lak bài toán đc chứng minh nha bn.)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Ta gọi 3 số tự nhiên liên tiếp lak: a, a+1, a+2.
+ Nếu a chia hết cho 3=> btđcm
+ Nếu a ko chia hết cho 3:
-a:3 dư 1 thì a+2 chia hết cho 3=> btđcm
-a:3 dư 2 thì a+1 chia hết cho 3=> btđcm
(btđcm lak bài toán đc chứng minh nha bn.)
Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn tồn tại một số chia hết cho 3
CMR trong 39 số tự nhiên liên tiếp bất kì luôn tồn tại một số có tổng các chữ số chia hết cho 11
giải bằng cách lớp 6 nhé
1, CMR: tổng của 3 số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp thì chia hết cho 5
2,CMR:
+ tổng của 3 số chẵn liên tiếp thì chia hết cho 6
+ tổng của 3 số lẻ liên tiếp thì không chia hết cho 6
+ tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5
CMR trong 21 số tự nhiên bất kì luôn tồn tại 3 số mà từng đôi một chia hết cho 10
Chứng minh rằng:
a.Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3.
b.Trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 3.
c.Trong 3 số lẻ liên tiếp luôn có 1 số chia hết cho 3.
chứng minh rằng trong 169 số tự nhiên liên tiếp bất kì luôn tồn tại một số có tổng các chữ số chia hết cho 16
Chứng minh rằng trong 19 số tự nhiên liên tiếp bất kì luôn tồn tại một số có tổng các chữ số chia hết cho 10
Cho 5 số tự nhiên a1;a2;a3;a4;a5.CMR tồn tại 1 số chia hết cho 5 hoặc tổng của một số số liên tiếp trong dãy đã chia hết cho 5