Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.Cho 5 số tự nhiên bất kì.CMR trong 5 số đó tồn tại 3 số có tổng chia hết cho 3
2.Cho 3 số nguyên tố lớn hơn 3.CMR tồn tại 2 số có tổng hoặc hiệu chia hết cho 2
3.CMR trong 12 số tự nhiên tùy ý, bao giờ ta cũng chọn đc 2 số mà hiệu của chúng chia hết cho 11
1) CMR tồn tại 1 số gồm toàn chữ số 6 chia hết cho 2003
2)CMR tồn tại hay không 1 số tự nhiên só tận cùng là 2002 chia hết cho 2003
3) Cho 2001 số bất kì.CMR có thể chonk 1 hoặc 1 số số mà tổng của chúng chia hết cho 2001
4) Trong 1 tam giác đều cạnh là 1.Ta đặt 17 điểm kể cả trên các cạnh.CMR tồn tai 2 điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 1/4
Dùng nguyên lí Dirichle để giải các bài tập sau:
1) Viết 20 số tự nhiên vào 20 tấm bìa. CMR: Ta có thể chọn 1 hay nhiều tấm bìa để tổng các số đó chia hết cho 20
2) CMR: tồn tại 1 số tự nhiên chia hết cho 17
a) Gồm toàn chữ số 1 và chữ số 0
b) Gồm toàn chữ số 1
3) CMR: Tồn tại số tự nhiên k để 3k có 3 chữ số tận cùng là 001
4) CHo 51 số tự nhiên khác 0 và không vượt quá 100. CMR:
a) Mỗi số đều viết được 2k.b(k;b thuộc N, b lẻ, k có thể = 0). Xác định khoảng giá trị của k và b
b) Tồn tại 2 số mà số này là bội của số kia
Dùng phương pháp phản chưng để giải các bài tập sau:
1) Một nhóm học sinh gồm 35 người chơi trong công viên trong đó có những người quen nhau và những người không quen nhau. CMR có ít nhất 1 người có số người quen trong nhóm là số chẵn.
2) Có 9 viên bi có màu xanh hoặc đỏ xếp cách đều nhau thành 1 hàng ngang. CMR: tồn tại 1 viên bi cách đều 2 viên bi cùng màu với nó.
3) Trên 1 vòng tròn, người ta xếp 10 bi đỏ và 1 số bi xanh. Biết rằng đối diện với 1 bi đỏ qua tâm vòng tròn là 1 bi xanh. CMR: tồn tại 2 bi xanh đặt cạnh nhau.
Cho 2 phân số : $C=\frac{2}{n-1}$C=2n−1 và $D=\frac{n+4}{n+1}$D=n+4n+1 , trong đó n là số nguyên
a, Viết tập hợp D các số nguyên n để cả 2 phân số C;D cùng tồn tại
b,Tìm các số nguyên n để C và D đều là các số nguyên
Coa phải nếu n E nsao thì tát cả mọi số đều đủ ddieeuf kiện cho n đúng không ạ
CMR ko tồn tại số nguyên tố p sao cho 2^p+3^p có dạng k^n, với k,n là các số nguyên dương lớn hơn 1
Bài 1: Tìm x, y nguyên dương thỏa mãn : y^3 = x^3 + 2x + 1
Bài 2: CMR tổng bình phương của 2 số lẻ bất kỳ không phải là số chính phương.
Bài 3: Tìm số chính phương có 4 chữ số biết rằng 2 chữ số đầu giống nhau, 2 chữ số cuối giống nhau.
tại mỗi đỉnh của 1 đa giác đều 11 cạnh ta ghi 1 số bất kì trong các số:31,32,61,62,91,92,331,332,361,362,961(mỗi số dùng 1 lần).c/m luôn tồn tại 3 đỉnh của đa giác là 3 đỉnh của 1 tam giác cân và tổng các số ghi trên đỉnh tam giác đó là số chia hết 3
1. Cho n là số tự nhiên \(\left(n\ge1\right)\). Giả sử \(2^n+1\)là 1 số nguyên tố. Cmr : n là một lũy thừa của 2
2. Cmr : tồn tại vô số số nguyên dương a sao cho n^4+a là k số nguyên tố \(\forall n\inℕ^∗\)
3. Cmr : \(\forall\)số nguyên tố p > 7 ta có : \(3^p-2^p-1⋮42\)