Chứng minh rằng tồn tại vô số số nguyên dương a sao cho Z=n4+a không là số nguyên tố ∀n ∈ N*
1. Cho n là số tự nhiên \(\left(n\ge1\right)\). Giả sử \(2^n+1\)là 1 số nguyên tố. Cmr : n là một lũy thừa của 2
2. Cmr : tồn tại vô số số nguyên dương a sao cho n^4+a là k số nguyên tố \(\forall n\inℕ^∗\)
3. Cmr : \(\forall\)số nguyên tố p > 7 ta có : \(3^p-2^p-1⋮42\)
CMR ko tồn tại số nguyên tố p sao cho 2^p+3^p có dạng k^n, với k,n là các số nguyên dương lớn hơn 1
cmr với mỗi số nguyên tố p tồn tại vô số số tự nhiên n sao cho 2n -n chia hết cho p
Một số nguyên dương n đc gọi là thú vị nếu tồn tại số nguyên dương x,y,z,t thỏa mãn n=(x^2+y^2)/(z^2+t^2)
a, Cm có vô hạn số thú vị
b, 2019 có là số thú vị k? Vì s
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
Giả sử n là một số nguyên dương thỏa mãn: Tồn tại a, b, c nguyên dương sao cho 7n = (a+bc)(b+ac). CMR: n chẵn
Chứng minh rằng không tồn tại 5 số nguyên dương phân biệt sao cho tổng ba số bất kì trong chúng là một số nguyên tố.
Một số nguyên dương n được gọi là "số điên cuồng" nếu tồn tại các số tự nhiên a, b > 1 để n = ab + b . Hỏi có tồn tại không một dãy gồm 2023 số nguyên dương liên tiếp sao cho trong dãy đó có chứa đúng 2018 số điên cuồng?