Bài 3: Hàm số liên tục

NN

Cmr: phương trình (2m2+3m+4)x4 + x -1=0 có nghiệm với mọi m

NL
16 tháng 5 2020 lúc 18:01

Xét hàm \(f\left(x\right)=\left(2m^2+3m+4\right)x^4+x-1\)

\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng thuộc R

\(f\left(0\right)=-1< 0\)

\(f\left(1\right)=2m^2+3m+4=2\left(m+\frac{3}{4}\right)^2+\frac{23}{8}>0\) ; \(\forall m\)

\(\Rightarrow f\left(0\right).f\left(1\right)< 0\)  ; \(\forall m\)

\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm trên khoảng \(\left(0;1\right)\) với mọi m hay pt đã cho luôn có nghiệm

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
TN
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết