chết mk nhìn nhầm , tổng ko âm chứ ko phải x,y,z ko âm
Vì x + y + z không âm nên x,y,z không âm
Áp dụng BĐT AM - GM:
\(x^3+y^3+z^3\ge3\sqrt[3]{\left(xyz\right)^3}=3xyz\)
chết mk nhìn nhầm , tổng ko âm chứ ko phải x,y,z ko âm
Vì x + y + z không âm nên x,y,z không âm
Áp dụng BĐT AM - GM:
\(x^3+y^3+z^3\ge3\sqrt[3]{\left(xyz\right)^3}=3xyz\)
a) Phân tích đa thức sau thành nhân tử: .x3+z3+y3-3xyz
b) Cho 3 số a, b, c thỏa mãn a+b+c khác 0 . Chứng minh rằng :.x3+z3+y3-3xyz/a+b+c lớn hơn hoặc bằng 0
a) Chứng minh nếu x + y + z = 0 thì x 3 + y 3 + z 3 = 3xyz.
b) Áp dụng. Phân tích các đa thức sau thành nhân tử:
P = ( a 2 + b 2 ) 3 + ( c 2 - a 2 ) 3 - ( b 2 + c 2 ) 3 .
cho x+y+z=2 và x3+y3+z3-3xyz=0. CMR:x=y=z
Cho các số thực x, y , z thỏa mãn 2 điều kiện :
a) (x + y) ( y + z)( z + x) = xyz
b) (x3 + y3 ) (y3 + z3) ( x3 + z3) = x3y3z3
CMR: xyz =0
CMR
a) xyz≠0, 1/x+1/y+1/z=0 thì (x2y2+y2z2+z2x2)2=2(x4y4+y4z4+z4x4)
b) x+y+z=0 thì x3+y3+z3-3xyz=0
cmr nếu x:y:z>0 thì
\(\frac{x3}{y2}+\frac{y3}{z2}+\frac{z3}{x2}>=x+y+z\)z
Làm phép nhân các phân thức
x3 +y3+z3-3xyz . x.(y2+Z)+y.(x-xy)
xy2+xz.(2y+z) (x-y)2+(y-z)2+(x-z)2
Số viết đằng sau là số mũ nha mấy bạn
Phân tích đa thức thành nhân tử:
a) ( 3 x + l ) 2 - ( 3 x - l ) 2 ; b) ( x + y ) 2 - ( x - y ) 2 ;
c) ( x + y ) 3 - ( x - y ) 3 ; d) x 3 + y 3 + z 3 - 3xyz.
Phân tích thành nhân tử: x 3 + y 3 + z 3 – 3xyz