Giả sử trong ba số a,b,c không có số nào chia hết cho 3
Khi đó \(a=3k\pm1\left(k\in Z\right)\)
\(b=3l\pm1\left(l\in Z\right)\)
\(c=3m\pm1\left(m\in Z\right)\)
\(\Rightarrow a^3\)chia 9 dư 1 hoặc -1
\(b^3\)chia 9 dư 1 hoặc -1
\(c^3\)chia 9 dư 1 hoặc -1
TH1: Nếu a chia hết cho 9 dư 1; b chia 9 dư 1; c chia 9 dư 1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư 3( vô lý )
TH2: Nếu \(a^3\)chia 9 dư 1 ; \(b^3\)chia 9 dư 1 ; \(c^3\)chia 9 dư 1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư 1( vô lý )
TH3: Nếu \(a^3\)chia 9 dư 1; \(b^3\)chia 9 dư -1 ;\(c^3\)chia 9 dư -1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư -1( vô lý )
TH4: Nếu \(a^3\)chia 9 dư -1; \(b^3\)chia 9 dư -1 ;\(c^3\)chia 9 dư -1
\(\Rightarrow a^3+b^3+c^3\)chia 9 dư -3 ( vô lý )
Vì a,b,c vai trò như nhau nên điều giả sử sai
Vậy luôn tồn tại 1 trong 3 số chia hết cho 3