Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a,b là 2 số nguyên.
CMR:\(5\left(a+b\right)^2+ab\)chia hết cho 441 thì ab cũng chia hết cho 441
tìm m và n để trong mỗi hàm số sau là hàm số bậc nhất:
a, \(y=\left(3n-1\right)\left(2m+3\right)x^2-\left(4m+3\right)x-5m^2+mn-1\)
b, \(y=\left(m^2-2mn+n^2\right)x^2-\left(3m+n\right)x-5\left(m-n\right)+1\)
c, \(y=\left(m-1\right)\left(n+3\right)x^2-2\left(m+1\right)\left(n-3\right)x-4mn+3\)
d, \(y=\left(2mn+2m-n-1\right)x^2+\left(mn+2m-3n-6\right)x+mn^2-2m+1\)
giúp mk vs m.n ơi!!!!! camon m.n nhìu nà!!! :)))
1,cmr
\(\frac{2\sqrt{mn}}{\sqrt{n}+\sqrt{n}+\sqrt{m+n}}\)=\(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)
1,rút gọn
a, 3\(\sqrt{27a}+2\sqrt{\frac{a}{3}}+a\sqrt{\frac{4}{3a}}\)
b,\(x^2\sqrt{\frac{12y}{x}}-xy\sqrt{\frac{x}{3y}}\)
c,\(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)
1, CMR nếu a, b, c là các số tự nhiên đôi một nguyên tố cùng nhau thì \(\left(ab+bc+ca,abc\right)=1\)
2, CMR \(\forall n\in N\)* thì \(\dfrac{\left(17+12\sqrt{2}\right)^n-\left(17-12\sqrt{2}\right)^n}{4\sqrt{2}}\)
3, Tìm x,y∈Z:\(x^3-y^3=13\left(x^2+y^2\right)\)
. Cho x,y,z > 0. Tim min của A =\(4.\left(x^2+y^2+z^2\right)+\dfrac{441}{x+2y+4z}\)
Bài 1: Cho a,b,c∈Z,\(a^2+b^2+c^2⋮9\). CMR: abc⋮3
Bài 2: Cho a,b,c,d bất kì nguyên. CMR:\(\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(b-c\right)\left(b-d\right)\left(c-d\right)⋮12\)
Bài 3: Tìm \(n\in N\)*:\(n.2^n+3^n⋮5\)
Tìm \(m,n\in Z\) thỏa mãn \(m\left(m+1\right)\left(m+2\right)=n^2\)
Với giá trị nào của m,n thì hàm số sau là hàm số bậc nhất:
y=\(\left(m^2+m-2\right)\cdot x^2+\left(m^2+mn-2n^2\right)\cdot x+2\)
CMR: nếu x+y+z =0 thì :
\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right).\)