H24

CMR : n4-10n2+9 chia hết cho 384 với mọi n lẻ

NN
2 tháng 10 2020 lúc 21:14

\(n^4-10n^2+9=\left(n^4-9n^2\right)-\left(n^2-9\right)\)

\(=n^2.\left(n^2-9\right)-\left(n^2-9\right)=\left(n^2-1\right)\left(n^2-9\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì n lẻ \(\Rightarrow n=2k+1\)\(k\inℤ\))

\(\Rightarrow n^4-10n^2+9=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\)

\(=16.k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

\(=16.\left(k-1\right).k.\left(k+1\right).\left(k+2\right)\)

Vì \(k-1\)\(k\)\(k+1\)\(k+2\)là 4 số nguyên liên tiếp

\(\Rightarrow\left(k-1\right).k.\left(k+1\right).\left(k+2\right)⋮24\)

\(\Rightarrow16.\left(k-1\right).k.\left(k+1\right).\left(k+2\right)⋮384\)

hay \(n^4-10n^2+9⋮384\)( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
OO
Xem chi tiết
CD
Xem chi tiết
HL
Xem chi tiết
TT
Xem chi tiết
LH
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
QT
Xem chi tiết