1 số tự nhiên sẽ có dạng 2k hoặc 2k+1
xét trường hợp 2k ta có 2k\(^2\)=4k\(^2\) chia hết cho 4
2k+1 ta có (2k+1)\(^2\) =4k\(^2\)+4k+1 chia 4 dư 1
1 số tự nhiên sẽ có dạng 2k hoặc 2k+1
xét trường hợp 2k ta có 2k\(^2\)=4k\(^2\) chia hết cho 4
2k+1 ta có (2k+1)\(^2\) =4k\(^2\)+4k+1 chia 4 dư 1
a)Chứng minh rằng một số chính phương chia hết cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
c)Các số sau có là số chính phương không?
Chứng minh rằng một số chính phương chia 8 chỉ có thể dư 0 hoặc 1 hoặc 4
Chứng minh rằng một số chính phương chia 8 chỉ có thể dư 0 hoặc 1 hoặc 4
chung minh rang
1 số chính phương khi chia cho 3 chỉ có thể dư 0 hoặc 1
Chứng minh rằng một số chính phương khi chia cho 3 chỉ có thể chia hết hoặc dư 1.
CM:1 số chính phương khi chia cho 4 chỉ có số dư là 0 hoặc 1
b, CMR:Tổng bình phương của 2 số tự nhiên lẻ bất kì không là số chính phương
)Chứng minh rằng một số chính phương chia hết cho 3 chỉ có thể có số dư bằng 0 hoặc 1.
b) Chứng minh rằng một số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.
c)Các số sau có là số chính phương không?
M = 19922 + 19932 +19942
N = 19922 + 19932 +19942 +19952
P = 1+ 9100+ 94100 +1994100.
CMR: 1 số chính phương khi chia cho 3 dư 0 hoặc 1 nhưng ko dư 2
Cmr 1 scp khi chia 3 thì số dư chỉ có thể là 0 hoặc 1