PY

CMR 

Mèo kêu meo meo

TD
2 tháng 5 2017 lúc 17:36

chứng minh rằng : 3/4 + 8/9 + 15/16 + ... + 2499/2500 > 48

giải

gọi A là tên biểu thức trên

Ta có :

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)

\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{2500}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)

\(A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)

gọi B là biểu thức trong ngoặc

Lại có : 

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}< 1\)

\(\Rightarrow A>48\)

Bình luận (0)
PY
2 tháng 5 2017 lúc 18:52

Bạn làm sai yêu cầu rùi nhé

Bình luận (0)
NT
3 tháng 5 2017 lúc 17:44

Phạm Hải Yến sửa nội dung sau khi SKT_NTT trả lời

Bình luận (0)

Các câu hỏi tương tự
IY
Xem chi tiết
CP
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
VQ
Xem chi tiết
HY
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết