Violympic toán 8

H24

Cmr \(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+yz+xz\) với x,y,z>0

NL
6 tháng 4 2019 lúc 10:19

\(\frac{x^3}{y}+xy\ge2x^2\); \(\frac{y^3}{z}+yz\ge2y^2\); \(\frac{z^3}{x}+xz\ge2z^2\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(x^2+y^2+z^2\right)\)

Mặt khác ta có BĐT: \(x^2+y^2+z^2\ge xy+xz+yz\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}+xy+xz+yz\ge2\left(xy+xz+yz\right)\)

\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+xz+yz\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\)

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
LS
Xem chi tiết
BL
Xem chi tiết
NQ
Xem chi tiết
MK
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
MK
Xem chi tiết
LL
Xem chi tiết