\(\frac{n^2+n+1}{n^4+n^2+1}=\frac{n^2+n+1}{n^4+2n^2+1-n^2}=\frac{n^2+n+1}{\left(n^2+1\right)^2-n^2}\)
\(=\frac{n^2+n+1}{\left(n^2+n+1\right)\left(n^2-n+1\right)}=\frac{1}{n^2-n+1}\)
Vậy \(\frac{n^2+n+1}{n^4+n^2+1}\) không là phân số tối giản với mọi \(n\inℕ^∗\)
phân tích mẫu có chứa tử , rút gọn nên ko tối giản thôi mà.