Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

PM

CMR: \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 28\)

NV
18 tháng 6 2017 lúc 12:49

\(\frac{1}{\sqrt{2}}=\frac{2}{2\sqrt{2}}< \frac{2}{\sqrt{2}+\sqrt{1}}=\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=2\left(\sqrt{2}-1\right)\)

\(\frac{1}{\sqrt{3}}=\frac{2}{2\sqrt{3}}< \frac{2}{\sqrt{3}+\sqrt{2}}=\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}=2\left(\sqrt{3}-\sqrt{2}\right)\)

.

.

.

\(\frac{1}{\sqrt{225}}=\frac{2}{2\sqrt{225}}< \frac{2}{\sqrt{225}+\sqrt{224}}=\frac{2\left(\sqrt{225}-\sqrt{224}\right)}{\left(\sqrt{225}+\sqrt{224}\right)\left(\sqrt{225}-\sqrt{224}\right)}\)\(=2\left(\sqrt{225}-\sqrt{224}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{225}-\sqrt{224}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 2\left(\sqrt{225}-1\right)=2\left(15-1\right)=28\)

Bình luận (0)

Các câu hỏi tương tự
KA
Xem chi tiết
NU
Xem chi tiết
TH
Xem chi tiết
LA
Xem chi tiết
LG
Xem chi tiết
KL
Xem chi tiết
NN
Xem chi tiết
LN
Xem chi tiết
HP
Xem chi tiết